3.427 \(\int \frac{\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=54 \[ \frac{2 \cot (c+d x)}{a^2 d}-\frac{3 \tanh ^{-1}(\cos (c+d x))}{2 a^2 d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a^2 d} \]

[Out]

(-3*ArcTanh[Cos[c + d*x]])/(2*a^2*d) + (2*Cot[c + d*x])/(a^2*d) - (Cot[c + d*x]*Csc[c + d*x])/(2*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.151406, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {2869, 2757, 3770, 3767, 8, 3768} \[ \frac{2 \cot (c+d x)}{a^2 d}-\frac{3 \tanh ^{-1}(\cos (c+d x))}{2 a^2 d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a^2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*Cot[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]

[Out]

(-3*ArcTanh[Cos[c + d*x]])/(2*a^2*d) + (2*Cot[c + d*x])/(a^2*d) - (Cot[c + d*x]*Csc[c + d*x])/(2*a^2*d)

Rule 2869

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[a^(2*m), Int[(d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f,
 n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx &=\frac{\int \csc ^3(c+d x) (a-a \sin (c+d x))^2 \, dx}{a^4}\\ &=\frac{\int \left (a^2 \csc (c+d x)-2 a^2 \csc ^2(c+d x)+a^2 \csc ^3(c+d x)\right ) \, dx}{a^4}\\ &=\frac{\int \csc (c+d x) \, dx}{a^2}+\frac{\int \csc ^3(c+d x) \, dx}{a^2}-\frac{2 \int \csc ^2(c+d x) \, dx}{a^2}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a^2 d}+\frac{\int \csc (c+d x) \, dx}{2 a^2}+\frac{2 \operatorname{Subst}(\int 1 \, dx,x,\cot (c+d x))}{a^2 d}\\ &=-\frac{3 \tanh ^{-1}(\cos (c+d x))}{2 a^2 d}+\frac{2 \cot (c+d x)}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a^2 d}\\ \end{align*}

Mathematica [A]  time = 0.521196, size = 86, normalized size = 1.59 \[ -\frac{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^4 \left (\cot (c+d x) (\csc (c+d x)-4)+3 \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )\right )\right )}{2 a^2 d (\sin (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]

[Out]

-((Cot[c + d*x]*(-4 + Csc[c + d*x]) + 3*(Log[Cos[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]]))*(Cos[(c + d*x)/2] + S
in[(c + d*x)/2])^4)/(2*a^2*d*(1 + Sin[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.158, size = 93, normalized size = 1.7 \begin{align*}{\frac{1}{8\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{1}{d{a}^{2}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{1}{d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}+{\frac{3}{2\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{1}{8\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x)

[Out]

1/8/d/a^2*tan(1/2*d*x+1/2*c)^2-1/d/a^2*tan(1/2*d*x+1/2*c)+1/d/a^2/tan(1/2*d*x+1/2*c)+3/2/d/a^2*ln(tan(1/2*d*x+
1/2*c))-1/8/d/a^2/tan(1/2*d*x+1/2*c)^2

________________________________________________________________________________________

Maxima [B]  time = 1.13041, size = 155, normalized size = 2.87 \begin{align*} -\frac{\frac{\frac{8 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}}{a^{2}} - \frac{12 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} - \frac{{\left (\frac{8 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}{a^{2} \sin \left (d x + c\right )^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/8*((8*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^2/(cos(d*x + c) + 1)^2)/a^2 - 12*log(sin(d*x + c)/(cos
(d*x + c) + 1))/a^2 - (8*sin(d*x + c)/(cos(d*x + c) + 1) - 1)*(cos(d*x + c) + 1)^2/(a^2*sin(d*x + c)^2))/d

________________________________________________________________________________________

Fricas [A]  time = 1.07754, size = 258, normalized size = 4.78 \begin{align*} -\frac{3 \,{\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) - 3 \,{\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 8 \, \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/4*(3*(cos(d*x + c)^2 - 1)*log(1/2*cos(d*x + c) + 1/2) - 3*(cos(d*x + c)^2 - 1)*log(-1/2*cos(d*x + c) + 1/2)
 + 8*cos(d*x + c)*sin(d*x + c) - 2*cos(d*x + c))/(a^2*d*cos(d*x + c)^2 - a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**3/(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.37688, size = 132, normalized size = 2.44 \begin{align*} \frac{\frac{12 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{2}} + \frac{a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 8 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{4}} - \frac{18 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 8 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1}{a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/8*(12*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 + (a^2*tan(1/2*d*x + 1/2*c)^2 - 8*a^2*tan(1/2*d*x + 1/2*c))/a^4 - (
18*tan(1/2*d*x + 1/2*c)^2 - 8*tan(1/2*d*x + 1/2*c) + 1)/(a^2*tan(1/2*d*x + 1/2*c)^2))/d